首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6990篇
  免费   478篇
  国内免费   591篇
  2024年   3篇
  2023年   88篇
  2022年   114篇
  2021年   354篇
  2020年   233篇
  2019年   295篇
  2018年   292篇
  2017年   218篇
  2016年   286篇
  2015年   455篇
  2014年   526篇
  2013年   535篇
  2012年   625篇
  2011年   601篇
  2010年   384篇
  2009年   320篇
  2008年   374篇
  2007年   324篇
  2006年   299篇
  2005年   253篇
  2004年   213篇
  2003年   175篇
  2002年   161篇
  2001年   106篇
  2000年   89篇
  1999年   103篇
  1998年   66篇
  1997年   65篇
  1996年   65篇
  1995年   64篇
  1994年   41篇
  1993年   46篇
  1992年   56篇
  1991年   50篇
  1990年   39篇
  1989年   28篇
  1988年   19篇
  1987年   29篇
  1986年   17篇
  1985年   17篇
  1983年   7篇
  1982年   6篇
  1981年   3篇
  1980年   4篇
  1977年   2篇
  1973年   2篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1932年   1篇
排序方式: 共有8059条查询结果,搜索用时 716 毫秒
991.
The domestic chicken is an attractive model system to explore the development and function of brain circuits. Electroporation-mediated and retrovirus (including lentivirus) vector-mediated gene transfer techniques have been widely used to introduce genetic material into chicken cells. However, it is still challenging to efficiently transduce chicken postmitotic neurons without harming the cells. To overcome this problem, we searched for a virus vector suitable for gene transfer into chicken neurons, and report here a novel recombinant virus vector derived from avian adeno-associated virus (A3V). A3V vector efficiently transduces neuronal cells, but not non-neuronal cells in the brain. A single A3V injection into a postembryonic chick brain allows gene expression selectively in neuronal cells within 24 hrs. Such rapid and neuron-specific gene transduction raises the possibility that A3V vector can be utilized for studies of memory formation in filial imprinting, which occurs during the early postnatal days. A3V injection into the neural tube near the ear vesicle at early embryonic stage resulted in persistent and robust gene expression until E20.5 in the auditory brainstem. We further devised an A3V-mediated tetracycline (Tet) dependent gene expression system as a tool for studying the auditory circuit, consisting of the nucleus magnocellularis (NM) and nucleus laminaris (NL), that primarily computes interaural time differences (ITDs). Using this Tet system, we can transduce NM neurons without affecting NL neurons. Thus, the A3V technology complements current gene transfer techniques in chicken studies and will contribute to better understanding of the functional organization of neural circuits.  相似文献   
992.
JP Dai  WZ Li  XF Zhao  GF Wang  JC Yang  L Zhang  XX Chen  YX Xu  KS Li 《PloS one》2012,7(8):e42706
In this research, we have established a drug screening method based on the autophagy signal pathway using the bimolecular fluorescence complementation - fluorescence resonance energy transfer (BiFC-FRET) technique to develop novel anti-influenza A virus (IAV) drugs. We selected Evodia rutaecarpa Benth out of 83 examples of traditional Chinese medicine and explored the mechanisms of evodiamine, the major active component of Evodia rutaecarpa Benth, on anti-IAV activity. Our results showed that evodiamine could significantly inhibit IAV replication, as determined by a plaque inhibition assay, an IAV vRNA promoter luciferase reporter assay and the Sulforhodamine B method using cytopathic effect (CPE) reduction. Additionally, evodiamine could significantly inhibit the accumulation of LC3-II and p62, and the dot-like aggregation of EGFP-LC3. This compound also inhibited the formation of the Atg5-Atg12/Atg16 heterotrimer, the expressions of Atg5, Atg7 and Atg12, and the cytokine release of TNF-α, IL-1β, IL-6 and IL-8 after IAV infection. Evodiamine inhibited IAV-induced autophagy was also dependent on its action on the AMPK/TSC2/mTOR signal pathway. In conclusion, we have established a new drug screening method, and selected evodiamine as a promising anti-IAV compound.  相似文献   
993.
Zhou Y  Fang L  Jiang L  Wen P  Cao H  He W  Dai C  Yang J 《PloS one》2012,7(6):e39738
Inflammation is a pathologic feature of hyperuricemia in clinical settings. However, the underlying mechanism remains unknown. Here, infiltration of T cells and macrophages were significantly increased in hyperuricemia mice kidneys. This infiltration of inflammatory cells was accompanied by an up-regulation of TNF-α, MCP-1 and RANTES expression. Further, infiltration was largely located in tubular interstitial spaces, suggesting a role for tubular cells in hyperuricemia-induced inflammation. In cultured tubular epithelial cells (NRK-52E), uric acid, probably transported via urate transporter, induced TNF-α, MCP-1 and RANTES mRNA as well as RANTES protein expression. Culture media of NRK-52E cells incubated with uric acid showed a chemo-attractive ability to recruit macrophage. Moreover uric acid activated NF-κB signaling. The uric acid-induced up-regulation of RANTES was blocked by SN 50, a specific NF-κB inhibitor. Activation of NF-κB signaling was also observed in tubule of hyperuricemia mice. These results suggest that uric acid induces renal inflammation via activation of NF-κB signaling.  相似文献   
994.
995.

Background

Rhombomys opimus (great gerbil) is a reservoir of Yersinia pestis in the natural plague foci of Central Asia. Great gerbils are highly resistant to Y. pestis infection. The coevolution of great gerbils and Y. pestis is believed to play an important role in the plague epidemics in Central Asia plague foci. However, the dynamics of Y. pestis infection and the corresponding antibody response in great gerbils have not been evaluated. In this report, animal experiments were employed to investigate the bacterial load in both the liver and spleen of infected great gerbils. The dynamics of the antibody response to the F1 capsule antigen of Y. pestis was also determined.

Methodology

Captured great gerbils that tested negative for both anti-F1 antibodies and bacterial isolation were infected subcutaneously with different doses (105 to 1011 CFU) of a Y. pestis strain isolated from a live great gerbil during routine plague surveillance in the Junggar Basin, Xinjiang, China. The clinical manifestations, changes in body weight, anal temperature, and gross anatomy of the infected animals were observed. The blood cell count, bacterial load, and anti-F1 antibody titers were determined at different time points after infection using a blood analyzer, plate counts, and an indirect hemagglutination assay, respectively.

Conclusions/Significance

The dynamics of bacterial load and the anti-F1 antibody concentration in great gerbils are highly variable among individuals. The Y. pestis infection in great gerbils could persist as long as 15 days. They act as an appropriate reservoir for plague in the Junggar Basin, which is part of the natural plague foci in Central Asia. The dynamics of the Y. pestis susceptibility of great gerbil will improve the understanding of its variable resistance, which would facilitate the development of more effective countermeasures for controlling plague epidemics in this focus.  相似文献   
996.
997.
Y Huang  Y Zhang  Y Wu  J Wang  X Liu  L Dai  L Wang  M Yu  W Mo 《PloS one》2012,7(8):e42207
A novel recombinant hirudin, RGD-hirudin, inhibits the activity of thrombin and the aggregation of platelets. Here, we successfully expressed (15)N, (13)C-labeled RGD-hirudin in Pichia pastoris in a fermenter. The protein was subsequently purified to yield sufficient quantities for structural and functional studies. The purified protein was characterized by HPLC and MALDI-TOF mass spectroscopy. Analysis revealed that the protein was pure and uniformly labeled with (15)N and (13)C. A bioassay showed that the anti-thrombin activity and the anti-platelet aggregation ability of the labeled protein were the same as those of unlabeled RGD-hirudin. Multidimensional heteronuclear NMR spectroscopy has been used to determine almost complete backbone (15)N, (13)C and (1)H resonance assignments of the r-RGD-Hirudin. The (15)N-(1)H HSQC spectrum of uniformly (15)N, (13)C-labeled RGD-hirudin allowed successful assignment of the signals. Examples of the quality of the data are provided for the (15)N-(l)H correlation spectrum, and by selected planes of the CBCA(CO)NH, CBCANH, and HNCO experiments. These results provide a basis for further studies on the structure-function relationship of RGD-hirudin with thrombin and platelets.  相似文献   
998.

Introduction

Current pathophysiological theories of schizophrenia highlight the role of altered brain functional and anatomical connectivity. The cognitive division of anterior cingulate cortex (ACC-cd) is a commonly reported abnormal brain region in schizophrenia for its importance in cognitive control process. The aim of this study was to investigate the functional and anatomical connectivity of ACC-cd and its cognitive and clinical manifestation significance in schizophrenia by using the resting-state functional magnetic resonance imaging (fMRI) and the diffusion tensor imaging (DTI).

Methods

Thirty-three medicated schizophrenics and 30 well-matched health controls were recruited. Region-of-interest (ROI)-based resting-state functional connectivity analysis and Tract-Based Spatial Statistics (TBSS) were performed on 30 patients and 30 controls, and 24 patients and 29 controls, respectively. The Pearson correlation was performed between the imaging measures and the Stroop performance and scores of the Positive and Negative Syndrome Scale (PANSS), respectively.

Results

Patients with schizophrenia showed significantly abnormal in the functional connectivity and its hemispheric asymmetry of the ACC-cd with multiple brain areas, e.g., decreased positive connectivity with the bilateral putamen and caudate, increased negative connectivity with the left posterior cingulated cortex (PCC), increased asymmetry of connectivity strength with the contralateral inferior frontal gyrus (IFG). The FA of the right anterior cingulum was significantly decreased in patients group (p = 0.014). The abnormal functional and structural connectivity of ACC-cd were correlated with Stroop performance and the severity of the symptoms in patients.

Conclusions

Our results suggested that the abnormal connectivity of the ACC-cd might play a role in the cognitive impairment and clinical symptoms in schizophrenia.  相似文献   
999.
1000.
Chen T  Yang K  Yu J  Meng W  Yuan D  Bi F  Liu F  Liu J  Dai B  Chen X  Wang F  Zeng F  Xu H  Hu J  Mo X 《Cell research》2012,22(1):248-258
Gastric cancer is the fourth most common cancer worldwide, with a high rate of death and low 5-year survival rate. To date, there is a lack of efficient therapeutic protocols for gastric cancer. Recent studies suggest that cancer stem cells (CSCs) are responsible for tumor initiation, invasion, metastasis, and resistance to anticancer therapies. Thus, therapies that target gastric CSCs are attractive. However, CSCs in human gastric adenocarcinoma (GAC) have not been described. Here, we identify CSCs in tumor tissues and peripheral blood from GAC patients. CSCs of human GAC (GCSCs) that are isolated from tumor tissues and peripheral blood of patients carried CD44 and CD54 surface markers, generated tumors that highly resemble the original human tumors when injected into immunodeficient mice, differentiated into gastric epithelial cells in vitro, and self-renewed in vivo and in vitro. Our findings suggest that effective therapeutic protocols must target GCSCs. The capture of GCSCs from the circulation of GAC patients also shows great potential for identification of a critical cell population potentially responsible for tumor metastasis, and provides an effective protocol for early diagnosis and longitudinal monitoring of gastric cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号